Geometrische Interpretation von Matrizen/ Matrizenmultiplikation

Wir benötigen zunächst folgende Tabelle für verschiedene Winkel und deren Umrechnung in das Bogenmaß und die entsprechenden Sinus- und Kosinuswerte.

α [°]	α [Bogenmaß]	sin (α)	cos(\alpha)
90	1,570795	1,0000	0,0000
45	0,7853975	0,7071	0,7071
60	1,047196667	0,8660	0,5000

1. Drehung eines Vektor um 90° (im UZS)

Der Vektor

$$\mathbf{v} = \begin{bmatrix} 6 \\ 2 \end{bmatrix}$$

wird um den Winkel $\alpha=90^\circ$ im Uhrzeigersinn gedreht (Rotation um den Ursprung). Der um α im UZS gedrehte Vektors u besitzt offensichtlich die Koordinaten¹

$$\mathbf{u} = \begin{bmatrix} 2 \\ -6 \end{bmatrix}$$

Da nun aber

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 6 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ -6 \end{pmatrix}$$

ist, dürfen wir die Matrix

$$\mathbf{D}_{(-90)} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

geometrisch als eine Drehung des Vektors v um 90° in der xy-Ebene im UZS interpretieren.

[→] →

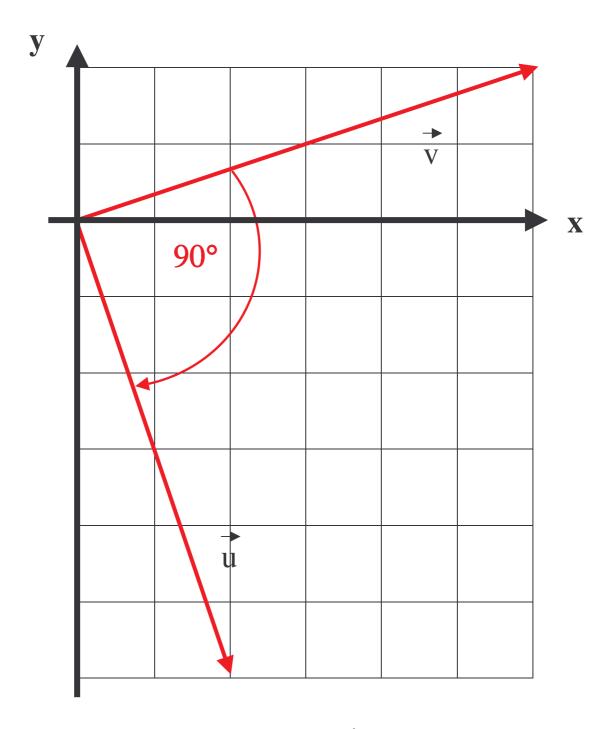


Abb.1 Drehung in der xy-Ebene um 90°im Uhrzeigersinn

2. <u>Drehung eines Vektor um 60° (im UZS)</u>

Der Vektor

$$\mathbf{v} = \begin{bmatrix} 6 \\ 2 \end{bmatrix}$$

wird in der xy-Ebene um den Winkel $\alpha=60^\circ$ im Uhrzeigersinn gedreht (Rotation — um den Ursprung). Die Koordinaten des gedrehten Vektors u besitzt die Koordinaten^2

$$\mathbf{u} = \begin{pmatrix} 4,73 \\ -4,19 \end{pmatrix}$$

Dies wird durch das Skalarprodukt leicht nachgewiesen.³ Da nun aber

$$\begin{pmatrix} 0,8660 & 0,5000 \\ -0,5000 & 0,8660 \end{pmatrix} \begin{pmatrix} 6 \\ 2 \end{pmatrix} = \begin{pmatrix} 4,73 \\ -4,19 \end{pmatrix}$$

ist, dürfen wir die Matrix

$$\mathbf{D}_{(-60)} = \begin{pmatrix} 0,8660 & 0,5000 \\ -0,5000 & 0,8660 \end{pmatrix}$$

geometrisch als eine Drehung des Vektors \dot{v} um 60° in der xy-Ebene im UZS interpretieren.

2

Werte auf zwei dezimalstellen genau, nicht gerundet.

Es gilt *arc cos* [6*4,73 + (-4,19)*2)/40] = *arc cos* (0,5000) = 1,047196667.

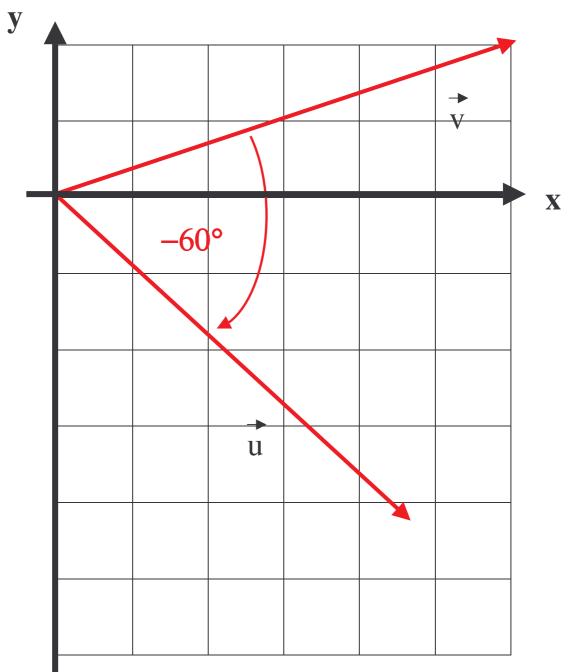


Abb.2 Drehung in der xy-Ebene um 60° gegen den Uhrzeigersinn

1. Rotationsmatrix (2D): Drehung eines Vektor um α (im UZS)

Der Vektor

$$\overrightarrow{\mathbf{v}} = \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix}$$

wird in der xy-Ebene um den Winkel α im Uhrzeigersinn gedreht (Rotation um \to den Ursprung). Der um α im UZS gedrehte Vektor u besitzt also die Koordinaten

$$\mathbf{u} = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{pmatrix} *\mathbf{v}$$

Daher dürfen wir die Matrix

$$\mathbf{D}_{(-\alpha)} = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{pmatrix}$$

geometrisch als eine Drehung des Vektors v um α in der xy-Ebene im UZS interpretieren.